Showing posts with label UUV. Show all posts
Showing posts with label UUV. Show all posts

Tuesday, July 9, 2024

US Navy to Deploy Uncrewed Underwater Vehicles from Submarines by End of 2024





The US Navy (USN) is set to deploy a torpedo-tube launch-and-recovery (TTL&R) uncrewed underwater vehicle (UUV) capability on an operational submarine for the first time. This deployment will begin by the end of 2024 in the European theatre. Although submarines have previously used UUVs, the TTL&R method simplifies deployment and retrieval, enhancing capabilities and maneuverability in the underwater domain.

Vice Admiral Rob Gaucher, Commander of Submarine Forces, announced at the Naval Leaders' Combined Naval Event 2024 (CNE 24) in Farnborough, UK, that the UUVs would be installed on the USS Delaware in the coming weeks and will be deployed by year's end. The Delaware, a Virginia-class nuclear-powered attack submarine commissioned in April 2020, is part of the USN's plan to develop a fully integrated SSN-based UUV capability.

Vice Adm Gaucher emphasized the importance of increasing UUV operations within the submarine force and outlined plans to accelerate this development in 2024. The deployment will include an HII REMUS 600 UUV, tested successfully in late 2023 when launched and recovered via the Delaware’s torpedo tube. The US Navy’s regional commanders in Europe will seek exercises and opportunities to test this TTL&R-based UUV capability during the Delaware’s deployment across the Atlantic.

The second successful test of the TTL&R capability occurred on the Delaware in December 2023, following an earlier test in the Pacific. Vice Adm Gaucher highlighted the need to integrate emerging commercial UUV technologies into regular naval operations, stressing the importance of practical experience and trials.

The TTL&R capability, part of the AUKUS (Australia/UK/US) strategic partnership, exemplifies new concepts and technologies being developed under Pillar 2. This development underscores the collaboration between the three navies in advancing subsea and seabed warfare capabilities, with UUVs playing a crucial role in defending underwater infrastructure.

Vice Adm Gaucher concluded by emphasizing the need for more exercises and development to expand uncrewed operations, aiming for exponential growth in the use of uncrewed systems. 

Sunday, June 23, 2024

Japan Commissions Sixth Mogami-Class Frigate 'Agano' for JMSDF





 On June 21, 2024, Japanese shipbuilder Mitsubishi Heavy Industries Maritime Systems Co., Ltd. held a delivery and flag-raising ceremony for the ‘Agano’ (あがの), officially commissioning it into the Japan Maritime Self-Defense Force (JMSDF). The 'Agano' is the sixth vessel in the Mogami-class series of next-generation frigates, designated with the pennant number FFM-6. It will be stationed at the Maizuru Naval Base.

The frigate is named after the Agano River, a notable river in the Hokuriku region of Honshu, Japan. The ship was launched by MHI in Nagasaki in December 2022.



The Mogami-class frigates, also known as 30FFM and previously 30DX, represent the next generation of multi-mission vessels for the JMSDF. The JMSDF initially planned to procure 22 of these frigates but has revised this number to 12 by the end of fiscal year 2023. From 2024 to 2028, a new class of 12 improved Mogami-class frigates will be built, featuring longer-range missiles, enhanced anti-submarine capabilities, and improved maritime operational functionalities.

Key specifications of the FFM include a full load displacement of approximately 5,500 tons, a length of 132.5 meters, and a beam of 16.3 meters, with a maximum speed exceeding 30 knots. The frigates are designed to be highly automated, requiring a crew of about 90 sailors.

The FFM is equipped with advanced weaponry and systems, including:

  • BAE Systems Mk.45 mod.4 5-inch naval gun system
  • Japan Steel Works 12.7mm Remote Weapon System (×2)
  • Mk.41 Vertical Launch System (VLS)
  • Raytheon SeaRAM
  • MHI Type 17 anti-ship missiles (×8)
  • Mitsubishi Electric OPY-2 multifunction Radar
  • Mitsubishi Electric OAX-3EO/IR sensors
  • Hitachi OQQ-11 anti-mine sonar
  • NEC OQQ-25 anti-submarine sonar (VDS/TASS)
  • Unmanned Underwater Vehicles (UUVs) and Unmanned Surface Vehicles (USVs) for mine countermeasures
  • Offensive sea mines

The introduction of the new-class FFM aims to bolster the JMSDF's capabilities, with the enhanced frigates featuring improved anti-aircraft and search functions, potentially elevating them to the status of missile frigates (FFG).

Additionally, the Royal Australian Navy has shortlisted the Mogami-class as one of four contenders for its next frigate, alongside Germany’s Meko A-200, South Korea’s Daegu class FFX Batch II and III, and Spain’s Navantia ALFA3000. Admiral Sakai Ryo of the JMSDF welcomed this selection, emphasizing the high trust and evaluation of Japanese naval equipment.

Northrop Grumman’s Manta Ray: Revolutionary Underwater Drone with Extended Capabilities

 




Northrop Grumman’s Manta Ray submersible underwater drone has been the subject of considerable interest for some time. Its exact dimensions have become clearer only recently, thanks to satellite images, including one captured a year ago and another more recently, which have been circulating on social media.

The Manta Ray, seen docked at the Port Hueneme Naval Base in California, has an imposing presence. The War Zone has even compared its size to that of a spaceship from Star Wars, suggesting it looks as though it has landed on Tatooine. This image, available on Google Earth from November 2023, includes a 3D visualization to help appreciate the Manta Ray’s massive size.

Official data indicates that the Manta Ray is approximately 30 feet long. This size allows it to house complex sensors and communication equipment while maintaining a streamlined design for efficient underwater movement. Its wingspan, critical for stability and maneuverability, is about 20 feet, enabling it to glide effortlessly underwater. The drone stands around 5 feet tall.

Unveiling the Manta Ray: What We Know

The Northrop Grumman Manta Ray is an advanced underwater vehicle designed for various military and research applications. It is part of a larger initiative to develop autonomous systems capable of extended underwater operations without human intervention.

The Manta Ray employs a range of sophisticated systems to ensure functionality and effectiveness. These include advanced sonar and sensor arrays for navigation and detection, communication systems for data transmission, and AI-driven software for autonomous decision-making and mission planning.

Manta Ray’s Propulsion and Equipment

The Manta Ray’s propulsion is powered by a combination of electric motors and energy-efficient propellers, allowing for quiet operation crucial for stealth missions and minimizing detection by adversaries.

Technologically, the Manta Ray boasts high-resolution imaging systems, environmental monitoring tools, and customizable payload bays for specific missions. Its primary purpose is to enhance military underwater operational capabilities, including intelligence gathering, mine countermeasures, and anti-submarine warfare. Its versatility also makes it suitable for non-military uses such as oceanographic research and underwater infrastructure inspection.

The Manta Ray is designed for extensive operational range, allowing it to cover large areas without frequent resurfacing. Its energy-efficient systems and advanced battery technology provide significant operational endurance, enabling it to stay underwater for weeks or even months, depending on mission requirements and environmental conditions. This long-duration capability distinguishes it from many other submersible drones, allowing for sustained operations in challenging underwater environments.

Ongoing Development and Future Prospects

Since 2020, Northrop Grumman has been developing the Manta Ray underwater drone under the Defense Advanced Research Projects Agency (DARPA) initiative. This project aims to create autonomous underwater vehicles capable of long-term missions without human intervention. The first tests of the Manta Ray took place in 2023, assessing its performance in various underwater environments and its ability to execute advanced missions autonomously.

The exact number of Manta Rays slated for production remains undisclosed. However, the strategic value of these autonomous underwater vehicles suggests that production numbers will depend on the success of these initial tests and further evaluations.

If early tests are successful, the production and deployment of Manta Ray submersible drones could begin in the latter half of this decade. This timeline allows for refinements and enhancements based on test outcomes, ensuring these drones meet the operational needs of the US Navy and other potential stakeholders.